An ARM-Based Q-Learning Algorithm
نویسندگان
چکیده
This article presents an algorithm that combines a FAST-based algorithm (Flexible Adaptable-Size Topology), called ARM, and Q-learning algorithm. The ARM is a self organizing architecture. Dynamically adjusting the size of sensitivity regions of each neuron and adaptively pruning one of the redundant neurons, the ARM can preserve resources (available neurons) to accommodate more categories. The Q-learning is a dynamic programming-based reinforcement learning method, in which the learned action-value function, Q, directly approximates Q*, the optimal action-value function, independent of the policy being followed. In the proposed method, the ARM acts as a cluster to categorize input vectors from the outside world. Clustered results are then sent to the Q-learning architecture in order that it learns to present the best actions to the outside world. The effect of the algorithm is shown through computer simulations of the well-known control of balancing an inverted pendulum on a cart.
منابع مشابه
User-based Vehicle Route Guidance in Urban Networks Based on Intelligent Multi Agents Systems and the ANT-Q Algorithm
Guiding vehicles to their destination under dynamic traffic conditions is an important topic in the field of Intelligent Transportation Systems (ITS). Nowadays, many complex systems can be controlled by using multi agent systems. Adaptation with the current condition is an important feature of the agents. In this research, formulation of dynamic guidance for vehicles has been investigated based...
متن کاملSelf-organizing state aggregation for architecture design of Q-learning
This work describes a novel algorithm that integrates an adaptive resonance method (ARM), i.e. an ART-based algorithm with a self-organized design, and a Q-learning algorithm. By dynamically adjusting the size of sensitivity regions of each neuron and adaptively eliminating one of the redundant neurons, ARM can preserve resources, i.e. available neurons, to accommodate additional categories. As...
متن کاملReinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic
In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...
متن کاملA Q-learning Based Continuous Tuning of Fuzzy Wall Tracking
A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...
متن کاملMini/Micro-Grid Adaptive Voltage and Frequency Stability Enhancement Using Q-learning Mechanism
This paper develops an adaptive control method for controlling frequency and voltage of an islanded mini/micro grid (M/µG) using reinforcement learning method. Reinforcement learning (RL) is one of the branches of the machine learning, which is the main solution method of Markov decision process (MDPs). Among the several solution methods of RL, the Q-learning method is used for solving RL in th...
متن کامل